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Abstract

Purpose – To develop a high-order compact finite-difference method for solving flow problems
containing shock waves.

Design/methodology/approach – A numerical algorithm based on high-order compact
finite-difference schemes is developed for solving Navier-Stokes equations in two-dimensional
space. The convective flux terms are discretized by using advection upstream splitting method
(AUSM). The developed method is then used to compute some example laminar flow problems.
The problems considered have a range of Mach number that corresponds to subsonic incompressible
flow to hypersonic compressible flows that contain shock waves and shock/boundary-layer
interaction.

Findings – The paper shows that the AUSM flux splitting and high-order compact finite-difference
methods can be used accurately and robustly in resolving shear layers and capturing shock waves.
The highly diffusive nature of conventional flux splitting especially on coarse grids makes them
inaccurate for boundary layers even with high-order discretization.

Originality/value – This paper presents a high-order numerical method that can accurately and
robustly capture shock waves without deteriorating oscillations and resolve boundary layers and
shock/boundary layer interaction.
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Introduction
The primary objective of numerical schemes for solving practical application gas
dynamics problems is to maximize both robustness and accuracy. This requirement is
particularly important in full Navier-Stokes solutions in high-speed regimes where
intense shock waves and boundary layers may simultaneously exist. High-order
compact space discretization schemes have attracted much attention in recent years
due to their narrow grid stencil, enhanced accuracy and better resolution
characteristics over the non-compact conventional schemes.

Lele (1992) has presented and analyzed a class of high-order compact schemes for
space discretization and introduced the notion of resolution efficiency. Wilson et al.
(1998) have proposed high-order compact schemes and discussed their application to
incompressible Navier-Stokes equations calculations. Ekaterinaris (1999, 2000) has
discussed the application of central high-order compact schemes to Euler and
compressible Navier-Stokes equations and developed implicit solution algorithms.

Upwind schemes are today’s main trend of spatial discretization which may be
categorized as either flux vector splitting (FVS) or flux difference splitting (FDS). FVS
such as Steger and Warming’s (1981) and Van Leer’s (1979) are known to be simple and
robust in the capture of intense shocks and rarefaction waves. The high-order compact
methods developed by Cockburn and Shu (1994), Mawlood et al. (2003) and
Ravichandran (1997) among others, are examples of FVS-based schemes. The
drawback of FVS methods is that they have accuracy problems in resolving shear
layer regions due to the excessive numerical dissipation error associated with them.

In contrast, FDS such as Roe’s (1981) scheme that utilizes the solution of the local
Riemann problem usually provides accurate solutions. The numerical methods
developed by Deng and Maekawa (1997) for solving Euler equations and Deng and
Zhang (2000) for Euler and Navier-Stokes equations are examples of high-order
compact methods that utilize Roe’s (1981) FDS. Unfortunately, Roe’s scheme has a
number of robustness problems such as the violation of entropy condition and the
carbuncle phenomenon (Liou and Steffen, 1993).

A recent trend in the development of upwind schemes has centered on the
construction of hybrid flux-splitting formulations which seek to combine the accuracy
of FDS approaches in the resolution of shear layers with the robustness of FVS in the
capturing of strong discontinuities. Liou and Steffen (1993) among others, suggested a
method known as the advection upstream splitting method (AUSM). In this method,
the inviscid flux at a cell interface is split into a convective contribution, which is
upwinded in the direction of the flow, and a pressure contribution, which is upwinded
based on acoustic considerations. The direction of the flow is determined by the sign of
a Mach number defined by combining information from both the left and right states
about the cell interface.

In the present work, a fourth-order compact space discretization method that is
based on the AUSM flux splitting is developed and tested. The method is used for the
discretization of the convective flux terms of the Navier-Stokes equations. The
diffusive flux terms of the Navier-Stokes equations are discretized by a central
fourth-order compact method. Computed results are presented for four example
problems, namely, incompressible laminar flow between parallel plates,
shock-boundary layer interaction, hypersonic flow past 248 compression ramp and
hypersonic flow past a circular cylinder. In the first example, a comparison is made
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between Van Leer’s FVS and AUSM results on a coarse grid. The tests have shown
that the AUSM-based method resolves the shear layer and its development very well.
The computed results for the shock-boundary layer interaction and the hypersonic
flows compare favorably with the available experimental and numerical data. The
computed results also indicate that FVS method is inadequate for computing shear
layers with coarse grid and that the highly diffusive nature of FVS cannot be cured by
high-order accurate schemes.

Governing equations
The two-dimensional normalized compressible Navier-Stokes equations can be written
in the strong conservation form as
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here r, u, v, p, e and H are the density, the x-component of velocity, the y-component of
velocity, the pressure, the total energy, and the total enthalpy, respectively. The total
enthalpy H, is related to the other quantities by the relation

H ¼ eþ
p

r
:
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For a perfect gas the total energy is given by

e ¼
p

rðg2 1Þ
þ

1

2
ðu 2 þ v 2Þ

where g is the ratio of specific heats and takes the value of 1.4 for air. The
normalization has been carried out by using the following free-stream reference
quantities: density r1, sonic speed c1, pressure r1c

2
1; reference length scale L1 and

the reference time L1/c1. The sonic speed is defined as c ¼
ffiffiffiffiffiffiffiffiffiffi
gp=r

p
:

Equation (1) can be transformed from Cartesian coordinates (x,y) into generalized
coordinates (j, h) as
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The metric terms are related to the derivatives of x and y by

jx ¼ Jyh; jy ¼ 2Jxhhx ¼ 2Jyj; hy ¼ Jxj ð3Þ

and the Jacobian of the transformation is given by

J ¼
1

ðxjyh 2 yjxhÞ
: ð4Þ

Spatial discretization
It has been pointed out that FVS leads to excessive numerical diffusion and artificial
broadening of boundary layers that cannot be cured by high-order differencing.
Therefore, the hybrid AUSM flux splitting is adopted here for the discretization of the
inviscid flux derivatives of the Navier-Stokes equations. In the following development
the j-direction discretization is presented, the h-direction discretization follows a
similar procedure. The mid-point numerical flux, using the AUSM splitting approach,
can be written as (Liou and Steffen, 1993)
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The left ( · )L and right ( · )R states are obtained by a fourth-order MUSCL polynomial
presented by Yamamoto and Daiguji (1993). The high-order approximations to the
derivatives are then obtained by the cell-centered fourth-order compact scheme of Lele
(1992) as follows:
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where ~E 0
i; j represents the higher-order approximation to the first derivatives.

Equation (6) is used for evaluating the derivatives at the interior points. At the
boundaries the following one-sided compact schemes are used:
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Evaluation of the h-direction derivatives are carried out in a similar manner and are
not shown here.

The computation of the viscous flux derivatives is carried out by a fourth-order
compact central (Padé) scheme (Lele, 1992). The primitive variables u, v and T are first
differentiated and the stress tensor is formed at each grid point. The viscous terms are
then differentiated by another application of the compact scheme that can be written as
(Lele, 1992)
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where ~E 0
vi; j

and ~F 0
vi; j

represent the fourth-order approximations to the derivatives
› ~Ev=›jji; j and › ~Fv=›hji; j; respectively.

Numerical results
Calculations are carried out for four laminar flow example problems with a Mach
number range corresponding to subsonic incompressible flow up to compressible
hypersonic flows. The first example is laminar incompressible flow between two
parallel plates. It is intended to demonstrate the high diffusive nature of flux-vector
splitting when used with coarse computational grid. Example 2 is shock boundary
layer interaction past a flat plate, Example 3 is hypersonic flow past 248 ramp and
Example 5 is hypersonic flow past a circular cylinder.

Example 1: incompressible laminar flow in a 2D channel
This test example as mentioned above, is intended to demonstrate the accuracy of
the AUSM based high-order compact method developed in this study over the
conventional Van Leer’s FVS-based method. The diffusive nature of flux-vector
splitting which makes it inadequate for viscous flow computation is demonstrated by
using coarse mesh near the walls.

The exact solution of this flow problem in the fully developed region provides a
benchmark for comparing the conventional van Leer’s flux-vector splitting and the AUSM
methods. At the inlet uniform velocity and density are specified (r, u, v, p)in ¼ (1, 0.2,
0, pextrap) while the pressure is extrapolated from the interior points. At the outlet the
pressure is specified (pout ¼ 1/1.4) and the derivatives of the other variables with respect
tox are set to zero. Reynolds number (Re ¼ VL1/n) and Mach numberMin are set to 20 and
0.2, respectively. For this Reynolds number the expected length of the developing zone is
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about x/L1 < 1.2. Therefore, a computational domain extending to x/L1 ¼ 2 is
considered in this test. The computational mesh is composed of (33 £ 33) grid points
distributed uniformly in the x- and y-directions as shown in Figure 1.

Figure 2 shows the variation of the computed normalized centerline velocity umax/V
with x/L1. The exact value in the fully developed zone (umax/V ¼ 1.5) is also shown.
The AUSM method produces quite accurate value of the centerline velocity as the fully
developed zone is approached. The van Leer’s method overestimates the centerline
velocity. The reason is that the excessive diffusion added by the flux-vector splitting
method causes the boundary layer to grow thicker than its normal thickness.

The computed u-component velocity profiles in the fully developed zone
(x/L1 ¼ 1.8) are shown in Figure 3 in comparison with the exact parabolic velocity
profile. Again the diffusive nature of the flux-vector splitting is very clear.

Example 2: shock-wave/boundary-layer interaction
In this test case, an oblique shock wave is made to impinge on a laminar boundary layer
that has been developing on a flat plate. A strong shock with large incident angle causes

Figure 2.
Centerline velocity for
laminar flow between

parallel plates

Figure 1.
Solution domain for

laminar flow between
parallel plates
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the boundary layer to separate at the shock impinging point and subsequently it
reattaches thus creating a separation bubble while maintaining laminar flow conditions
throughout. The Mach number upstream the shock is M1 ¼ 2.0, the corresponding
shock angle is 32.588, the Reynolds number Re1 ¼ 2:96 £ 105 based on the upstream
velocity and the shock impingement distance on the flat plate for an inviscid flow. A
schematic diagram of the flow geometry is shown in Figure 4. Computations are carried
out on a mesh with (121 £ 81) grid points that are uniform in the stream-wise direction
but clustered in the transverse direction close to the flat plate.

The computational flow features are shown by the pressure contours in Figure 5,
which indicate the presence of a weak leading-edge shock generated by the initial
growth of the boundary layer, compression waves created by the separated portion of
the boundary layer, expansion waves over the separation bubble and recompression
waves due to reattachment at the wall.

Figures 6 and 7 show the distributions for the coefficient of surface pressure, Cp, and
the coefficient of skin-friction, Cf, respectively, in comparison with the experimental
data (Hakkinen et al., 1957). The filled symbols in Figure 7 representing experimental
data of negative values for the Cf in the separated flow region indicate that their
magnitudes have not be measured and have been set to zero for convenience. The
numerical results including the separation location and length compare favorably with
the experimental data.

Figure 3.
Comparison of velocity
profiles at x/L1 ¼ 1.8 for
laminar flow

Figure 4.
Schematic of
shock/boundary-layer
interaction
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Figure 5.
Pressure contours for
shock/boundary-layer

interaction

Figure 6.
Surface pressure
coefficient Cp for

shock/boundary-layer
interaction

Figure 7.
Coefficient of friction for

shock/boundary-layer
interaction
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Example 3: hypersonic flow past 248 compression ramp
In a hypersonic flow, the distribution of heat-transfer coefficient in addition to the
distributions of surface pressure and skin-friction coefficients is required for assessing
the accuracy of a numerical method.

The experimental data quoted by Kim et al. (1998) are used for testing the present
method. A compression corner is formed at the junction of a flat plate and a ramp with
248 compression angle. The flow geometry and the grid are shown in Figure 8. The
computational grid consists of (121 £ 51) points that are uniform in the stream-wise
direction but clustered in the transverse direction.

The free-stream conditions are as follows: Mach number M1 ¼ 14.1, static gas
temperature T1 ¼ 72.2 K which is low enough that real gas effects become
unimportant, gas density r1 ¼ 4:84 £ 1024 kg=m3; static pressure p1 ¼ 10.1 Pa, the
absolute viscosity m1 ¼ 4:9369 £ 1026 Pa s and Reynolds number Re1 ¼ 1:04 £ 105:
The Reynolds number is based on the upstream velocity and the length of the flat
portion of the compression corner. The wall condition is isothermal wall maintained at
Tw ¼ 297 K.

The computed flow field as shown by the pressure contours in Figure 9, contains
complicated shock-shock as well as shock boundary layer interactions. A leading-edge
shock wave intersects an induced shock wave, generated by the turning of the
boundary layer near the junction, to form a resultant shock accompanied by an
expansion fan and contact surface all of which influence the flow field.

The computed values of the surface pressure coefficient, skin friction coefficient and
the heat transfer coefficient represented by the Stanton number St are shown in
Figures 10-12, respectively. From all the comparisons shown it can be observed that
the calculations agree very well with the experimental data.

Figure 8.
Grid for hypersonic flow
past a 248 ramp

Figure 9.
Pressure contours for
hypersonic flow past 248
ramp
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Example 4: hypersonic flow past a circular cylinder
The last example is also steady hypersonic viscous flow but around a circular cylinder.
In this example, the present results are compared with a spectral solution (Kopriva,
1993). The flow conditions are M1 ¼ 5.73, Re ¼ 2,050, T1 ¼ 39.6698 K, Tw ¼ 210.2 K,
Pr ¼ 0.77 and the cylinder radius r ¼ 0.0061468 m.

Figure 13 shows the contour plots for the pressure and temperature computed by
the present method on a grid composed of 61 £ 61 grid points. The grids are clustered
in the radial direction and uniformly distributed in the angular direction. Figures 14
and 15 show results for the pressure coefficient and heat transfer on the surface of the
body, respectively. It can be seen that the present results compare very well with the
spectral solution.

Figure 10.
Pressure coefficient for

hypersonic flow past
248 ramp

Figure 11.
Coefficient of friction for

hypersonic flow past
248 ramp
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Conclusions
A fourth-order compact method is developed for solving the two-dimensional
Navier-stokes equations. The method is based on the AUSM flux splitting and a
cell-centered compact scheme for the discretization of convective flux terms. A central
compact scheme is used for the discretization of the diffusion flux terms. The
numerical method is tested by solving four example problems, namely, the laminar
boundary layer past a flat plate and the problem of shock/boundary layer interaction.
The tests have shown good agreement with theoretical and experimental data. The
inadequacy of the conventional FVS for solving Navier-Stokes equations is also
demonstrated.

Figure 12.
Stanton number for
hypersonic flow past
248 ramp

Figure 13.
Pressure and temperature
contours for hypersonic
flow past circular cylinder
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